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We have detected coherent quantum oscillations between Josephson phase qubits and critical-
current fluctuators by implementing a new state readout technique that is an order of magnitude
faster than previous methods. These results reveal a new aspect of the quantum behavior of Joseph-
son junctions, and they demonstrate the means to measure two-qubit interactions in the time do-
main. The junction-fluctuator interaction also points to a possible mechanism for decoherence and
reduced fidelity in superconducting qubits.

Superconducting circuits based on Josephson tunnel
junctions have attracted renewed attention because of
their potential use as quantum bits (qubits) in a quantum
computer. Rapid progress toward this goal is indicated
by the observation of Rabi oscillations in charge, flux,
phase, and hybrid charge/flux based Josephson qubits[1–
4]. In addition, coupled-qubit interactions have been in-
ferred spectroscopically[5, 6], and a two-qubit quantum
gate has been implemented[7]. However, the direct de-
tection of time-domain correlations in coupled-qubits re-
mains elusive. One obstacle to observing two-qubit dy-
namics is that the single-shot state readout time must be
much shorter than the qubit coherence time (∼ 10− 100
ns) and the timescale of the coupled-qubit interaction.
Fast readout techniques are also needed for error correc-
tion algorithms[8].

Here we report a high-fidelity state measurement of
the phase qubit with a duration of only 2 − 4 ns.
Using this new readout technique, we directly detect
time-domain quantum oscillations between the qubit
and the recently discovered spurious resonators associ-
ated with critical-current fluctuators in Josephson tun-
nel junctions[9]. These results explicitly illustrate the
mechanism by which critical-current fluctuators deco-
here phase qubits. We also present a model that at-
tributes reduced measurement fidelity to the spurious
resonators, and speculate that qubit-fluctuator coupling
contributes to decoherence and loss of fidelity in the flux
and charge/flux qubits. In addition to revealing these
new aspects of qubit physics, the few-nanosecond mea-
surement technique will be valuable for future experi-
ments on coupled qubits.

The design of Josephson phase qubits has been de-
scribed previously [1, 9], and Fig. 1a shows the principal
circuitry used in this experiment. The qubit’s Joseph-
son junction is embedded in a superconducting loop, and
current-biasing of the junction is achieved by coupling
flux into the loop from the nearby bias line. The bias
current Iφ = Idc +δI(t) consists of a slowly-varying com-
ponent Idc and a short pulse δI(t) used for the fast mea-

FIG. 1: (a) Schematic of the qubit circuitry, with Josephson
junctions denoted by the symbol X. For the qubit used in Fig.
2, the Josephson critical-current and junction capacitance are
I0 ≈ 10 µA and C ≈ 2 pF; in Figs. 3 and 4, each of these
values is about 5 times smaller. (b) Potential energy land-
scape and quantized energy levels for Iφ = Idc prior to the
state measurement. (c) At the peak of δI(t), the qubit well
is much shallower and state |1〉 rapidly tunnels to the right
hand well.

surement scheme. Microwave currents Iµw, used to con-
trol the state of the qubit, are capacitively coupled to
the qubit after passing through low-temperature attenu-
ators (not shown). The dashed box in Fig. 1a surrounds
on-chip components kept near 25 mK. Figure 1b shows
the potential energy landscape of the qubit’s Josephson
phase, including the cubic confinement potential on the
left that is characteristic of all Josephson phase qubits.
The states labeled |0〉 and |1〉, separated by an energy
h̄ω10, are the two qubit states. Both h̄ω10 and the depth
of the left hand well, ∆U , can be adjusted by varying Iφ.

Rabi oscillations between states |0〉 and |1〉 can be ob-
served by irradiating the qubit with microwaves at a fre-
quency ω/2π ≈ ω10/2π ∼ 5−10 GHz and then measuring
the qubit’s probability of being in state |1〉. This prob-
ability was previously measured by applying microwaves
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FIG. 2: (a) Room temperature measurement of the fast cur-
rent pulse. (b) Tunneling probability versus δImax with the
qubit in state |0〉 (solid circles) and in an equal mixture of
states |1〉 and |0〉 (open circles). Fit to data is shown by the
solid line. The plateau, being less than 0.5, corresponds to a
maximum measurement fidelity of 0.63.

at a frequency ω31 for a duration of 80-100 ns. If the
qubit is initially in state |1〉, the ω31 signal causes a tran-
sition to state |3〉, quickly followed by the qubit tunneling
into the right hand well. In this way, the qubit measure-
ment consists of mapping the states |0〉 and |1〉 into the
left and right hand wells, which are separated by a single
flux quantum in the qubit loop. At a later time, the re-
sult of this measurement can be learned by acquiring the
I − V curve of a SQUID amplifier positioned to detect
flux changes in the qubit loop. We emphasize that the
qubit state measurement time (i.e., the time required to
induce conditional tunneling out of the left hand well) is
independent of the SQUID amplification step. Also, by
using the 1 → 3 transition tunneling scheme, the mea-
surement time cannot be made significantly shorter than
∼ 80 ns because of the need to balance the strength of
the transition against the tunneling rate of state |3〉.

Here, a faster state measurement is achieved by ap-
plying a short bias current pulse δI(t) that adiabatically
reduces the well depth ∆U/h̄ωp so that the state |1〉 lies
very near the top of the well when the current pulse is
at its maximum δImax (see Fig. 1c). The value of δImax

is chosen so that the tunneling rate Γ1 of state |1〉 at
δImax is high enough for |1〉 to tunnel during the appli-
cation of δI(t). Also, because Γ1 is at least two orders
of magnitude larger than the tunneling rate Γ0 of |0〉,
a single current pulse yields a reliable measurement of
the probability that |1〉 is occupied. Calculations sug-
gest that the ratio of tunneling rates for shallow wells is
α = Γ1/Γ0 ≈ 150, and that the corresponding maximum
measurement fidelity is η ≈ 0.96. Here η is defined as the
difference of the tunneling probability when the qubit is
in state |1〉 versus state |0〉.

The fast pulse δI(t) is generated by capacitively cou-
pling a voltage step δV (t) to the qubit bias line (see Fig.
1a). Room temperature measurements reveal that δI(t)
has a width of about 5 ns, as shown in Fig. 2a. This
is sufficiently slow to maintain adiabaticity with respect

FIG. 3: Spectroscopy of ω10 obtained using the current-pulse
measurement method as a function of well depth ∆U/h̄ωp.
For each ∆U/h̄ωp, the grayscale intensity is the normalized
tunneling probability, with an original peak height of 0.1−0.3.
Insets: A given splitting in the spectroscopy of magnitude S
comes from a critical-current fluctuator coupled to the qubit
with strength hS/2. On resonance, the qubit-fluctuator eigen-
states are linear combinations of the states |1g〉 and |0e〉,
where |g〉 and |e〉 are the fluctuator states.

to the subnanosecond time scales of intrawell transitions.
The actual measurement time is somewhat shorter than
the full width of δI(t) because the tunneling rate Γ1 is ex-
ponentially sensitive to the total bias current Iφ. There-
fore, the qubit will be far more likely to tunnel near the
peak of δI(t) rather than its flanks, including the long
trailing-edge of δI(t) arising from impedance mismatches
in the current bias line. We estimate the effective mea-
surement duration to be 2 − 4 ns. This is more than an
order of magnitude shorter than the microwave measure-
ment technique as well as the readout methods used in
most other superconducting qubits[10].

The data in Fig. 2b demonstrate the effectiveness of
the fast measurement scheme. The solid circles are the
tunneling probability of the qubit as a function of the
pulse height δImax when no radiation at ω10 is applied,
i.e., when the qubit is in state |0〉. The data were ob-
tained at an initial well depth of ∆U = 4.5h̄ωp, where
ωp ≈ ω10/0.9 is the classical plasma frequency of the
Josephson junction. The open circles in Fig. 2 are the
measured tunneling probabilities as a function of δImax

after a microwave drive at ω10 saturates the populations
of |0〉 and |1〉 approximately equally. To produce a nearly
50/50 mixture of |0〉 and |1〉, microwaves were applied for
500 ns, much longer than the qubit’s T1 time, and their
power was high enough that the Rabi oscillation period
of about 10 ns is shorter than T1. The plateau in the
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tunneling probability data occurs around the values of
δImax where state |1〉 has a high tunneling rate while
state |0〉 remains mostly confined in its potential well.
For equal populations of |0〉 and |1〉, the plateau should
level out near 0.50 for the predicted measurement fidelity
of η = 0.96. Instead, the measured tunneling probability
plateaus around 0.35, suggesting a slightly lower fidelity.
Indeed, fitting the data to a simple model (solid line in
Fig. 2b) yields a maximum fidelity of η = 0.63. This
curve fit was made by finding the best weighted average
of the tunneling probabilities for states |0〉 and |1〉. The
former probabilities are the solid points in Fig. 2b, while
the latter are taken to be those same points shifted to
the left by an amount that gives the best fit.

The new state readout scheme is capable of measuring
the spectroscopy of the 0 → 1 transition for a broad range
of well depths, as shown in Fig. 3. The data were ob-
tained from a qubit with a slightly lower fidelity (η ≈ 0.5)
than that of Fig. 2b, but both exhibit the same essential
behavior. The grayscale is proportional to the occupation
probability of state |1〉 after a long, low-power microwave
drive is applied and δImax is adjusted to optimize the
signal at each flux bias point. Figure 3 shows a series of
resonance splittings that likely arise from an interaction
of the qubit with individual critical-current fluctuators at
microwave frequencies[9]. Treating a single fluctuator as
two-level quantum systems and labeling its ground and
excited states as |g〉 and |e〉, a coupling of strength hS/2
will split the direct-product states |1g〉 and |0e〉 by hS
when the qubit energy h̄ω10 is tuned to the fluctuator
energy Eeg (see insets to Fig. 3). Splittings as large as
S ≈ 70 MHz are visible in Fig. 3.

Simmonds et al. have already shown that the qubit’s
Rabi oscillations have reduced coherence when ω10 is
tuned near a splitting in the spectroscopy[9]. To bet-
ter understand the spurious resonators’ effect on the
qubit, it is helpful to examine the dynamics of the qubit-
fluctuator interaction directly, and the few-nanosecond
readout method allows us to accomplish this. Figure 4a
shows a section of the spectroscopy of Fig. 3 around
∆U/h̄ωp = 3.6, where a strong, well-isolated splitting oc-
curs at ω10/2π = 9.62 GHz with a magnitude of S ≈ 44
MHz. A smaller splitting of magnitude S ≈ 24 MHz is
visible at a slightly shallower well depth. Figure 4b shows
the time-domain response of the qubit to an 8 ns π-pulse
for the qubit tuned to the center of (solid) and away from
(dashed) the 44 MHz splitting in Fig. 4a. Following the
π-pulse, the fast measurement probe is applied after a de-
lay of τD to measure how the occupation probability of
|1〉 changes with time. For a well depth ∆U/h̄ωp = 3.50,
the dashed curve in Fig. 4b exhibits an exponential de-
cay with a time constant that is roughly T1 ≈ 25 ns[11].
In contrast, the solid curve in Fig. 4b shows that when
the qubit is tuned to a large splitting, at ∆U/h̄ωp = 3.58,
a striking oscillation in the tunneling probability is su-
perimposed on the T1 decay curve. Note that this is not

FIG. 4: (a) Detail of the qubit spectroscopy near ∆U/h̄ωp =
3.55, showing splittings of strengths S ≈ 44 MHz and 24 MHz.
(b) Tunneling probability versus measurement delay time τD

after application of π-pulse. Solid (dashed) line is taken at a
well depth of solid (dashed) arrow in (a), corresponding to a
resonant (off-resonant) bias. Inset illustrates how the qubit
probability amplitude first moves to state |1g〉 and then oscil-
lates between |1g〉 and |0e〉. (c) and (d) Tunneling probability
(gray scale) versus well depth and τD for experimental data
(c) and numerical simulation (d). The peak oscillation periods
are observed to correspond to the spectroscopic splittings.

a Rabi oscillation because there is no microwave driving
power at ω10. Instead, its period of 24 ns is very close
to the inverse of the measured splitting size S−1 = 23
ns, which is expected from the model of the qubit cou-
pled to a critical-current fluctuator with a strength S/2.
As shown in the inset to Fig. 4b, after the qubit is pro-
moted to state |1g〉 by the π-pulse, the qubit-fluctuator
interaction will cause an oscillation between |1g〉 and |0e〉
at a frequency S as energy is transferred back and forth
between the qubit and the fluctuator. The data in Fig.
4 thus constitute compelling evidence for coherent quan-
tum oscillations between the mesoscopic qubit and a sin-
gle microscopic fluctuator.

A further test of this model is to track the time-domain
response of the qubit over a narrow range of bias cur-
rents around the fluctuator’s resonant frequency. As
the qubit bias is moved away from the major resonance
near ∆U/h̄ωp = 3.60, Fig. 4c shows that the oscilla-
tion frequency increases as the states |1g〉 and |0e〉 be-
come nondegenerate. An interaction between the qubit
and a smaller splitting near ∆U/h̄ωp = 3.41 is also evi-
dent. Remarkably good agreement with this data comes
from the simulation shown in Fig. 4d. The simulation,
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where dissipation is ignored, is obtained by numerically
integrating the Schrodinger equation for the three-level
subspace of |1g1g2〉, |0e1g2〉, and |0g1e2〉. The three lev-
els denote the product states of the qubit with fluctuator
states |gi〉, |ei〉, for i = 1, 2, corresponding to the large
and small splittings of Fig. 4a. The coupling strengths
between the three states were chosen to match the ob-
served splitting sizes. While these results are consistent
with the fluctuators being strictly two-level systems, our
simulations and experimental results do not rule out the
possibility that a given fluctuator might have other ex-
cited levels out of resonance with the qubit. We em-
phasize that these results could not have been obtained
using the previous microwave measurement method be-
cause the signals would be averaged out over the ∼100
ns measurement time. Also, the demonstration of dy-
namical coupling between the qubit and a critical-current
fluctuator suggests that we now have the tools to success-
fully measure the coupling between two Josephson phase
qubits.

Interestingly, the data of Fig. 4 suggest that the coher-
ence time of a critical-current fluctuator can be at least
as long as that of the qubit. After all, once the fluc-
tuator absorbs the qubit energy after ∼ 10 ns, it does
not immediately decay from |0e〉 to |0g〉. In fact, the
decay envelope of the on-resonance signal in Fig. 4b is
about one to two times the T1 of the qubit away from
a large resonator, indicating that the decay time of a
strong critical-current fluctuator is at least as long as the
qubit’s T1 time. We thus speculate that spin-echo tech-
niques might be able to refocus some of the signal lost to
spurious resonators[12]. Another unexplored feature of
the qubit-fluctuator interaction is the effect of small fluc-
tuators not resolved in the spectroscopy data. Analyses
of the resonator distributions could reveal how strongly
such an ensemble of coupled critical-current fluctuators
would affect the qubit and whether this might be a factor
in the short T1 observed.

Another consequence of the dynamic qubit-resonator
interaction is reduced fidelity of the fast-pulse measure-
ment. As δI(t) increases during a measurement, the
qubit moves in and out of resonance with many spuri-
ous resonators before any tunneling occurs. If the qubit
is initialized in state |1〉, then each resonator absorbs a
small amount of the |1〉 probability amplitude during the
measurement pulse, leaving the qubit with some ampli-
tude in state |0〉. The probability of remaining in state
|1〉 after sweeping through a single fluctuator of strength
hS/2 can be estimated from the Zener-Landau tunneling
formula P (S) = exp(−π2S2/ḟ10), where ḟ10 = ω̇10/2π
is the rate of change of the qubit frequency during the
sweep[13].

Accounting for the effect of a collection of NSi
res-

onators of splitting size Si, the total measurement fidelity
becomes η ≈

∏
i P (Si)NSi . For the qubit used in Fig. 2,

spectroscopic measurements indicate that the rms split-

ting size of the 45 visible splittings is Srms ≈ 30 MHz.
Assuming that δI(t) results in a frequency sweep rate of
ḟ10 ≈ 1 GHz/ns, we find that the measurement fidelity
would be reduced from η ≈ 1 to η ≈ 0.7. The actual
fidelity of the qubit of Fig. 2 is η = 0.63, and there-
fore the qubit-fluctuator interaction is likely a promi-
nent source of fidelity loss in the fast-pulse measure-
ment method. Surprisingly, the Landau-Zener model
predicts that the fidelity should become worse as the
measurement duration becomes longer. Preliminary ex-
periments involving slower pulses of δI(t) are consistent
with this prediction, but separating the effect of fidelity
loss from the signal loss is difficult because of the short
T1 times. Nonetheless, this effect may be relevant to the
flux and the charge/flux qubits[3, 4] where fidelities of
η ∼ 0.6 have been observed, and where similar current
pulse schemes for state measurement and manipulation
are used. However, in the case of the charge qubit a prob-
ability plateau analogous to that of Fig. 2b is absent, and
the fidelity is estimated indirectly from the amplitude
of Rabi oscillations[14]. Whether these lowered fidelities
can be attributed to microscopic fluctuators remains to
be investigated.

In conclusion, we have implemented a state measure-
ment technique for the Josephson phase qubit that is an
order of magnitude faster than the microwave measure-
ment method. With a temporal resolution of less than 5
ns, the fast-pulse method reveals coherent quantum os-
cillations between the qubit and a microscopic resonator
embedded within the qubit circuit. The dynamics of the
qubit-resonator interaction illustrate one mechanism by
which the coherence of a superconducting qubit is lost to
its environment. The size and number of the resonators
suggest that they are relevant to fidelity loss in pulse
measurements, and we predict that the fidelity should
increase as the measurement duration decreases. These
results underscore the importance of understanding the
details of Josephson junction physics in order to explain
the quantum behavior of superconducting qubits. They
also prove that the tools are available for a time-domain
demonstration of the coupling of two phase qubits.
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